Campuran yang homogen antara dua macam zat atau lebih. Pada bab ini, kita akan mempelajari koloid. Sistem koloid sebenarnya terdiri atas dua fase, yaitu fase terdispersi dengan ukuran tertentu dalam medium pendispersi. Zat yang didispersikan disebut fase terdispersi sedangkan sedangkan medium yang digunakan untuk mendispersikan disebut medium pendispersi.
Dalam kehidupan sehari-hari kita sering bersinggungan dengan sistem koloid sehingga sangat penting untuk dikaji. Sebagai contoh, hampir semua bahan pangan mengandung partikel dengan ukuran koloid, seperti protein, karbohidrat, dan lemak. Emulsi seperti susu juga termasuk koloid. Dalam bidang farmasi, kebanyakan produknya juga berupa koloid, misalnya krim, dan salep yang termasuk emulsi.
Dalam industri cat, semen, dan industri karet untuk membuat ban semuanya melibatkan sistem koloid. Semua bentuk seperti spray untuk serangga, cat, hair spray, dan sebagainya adalah juga koloid. Dalam bidang pertanian, tanah juga dapat digolongkan sebagai koloid. Jadi sistem koloid sangat berguna bagi kehidupan manusia.
Contoh larutan, koloid, dan suspensi
Sistem Dispersi
Perbandingan sifat antara larutan, koloid, dan suspensi dijelaskan dalam Tabel 6.1
a.Perbandingan sifat antara larutan, koloid, dan suspensi
Sistem Dispers Dan Sistem Koloid
SISTEM DISPERS
A. Dispersi kasar
(suspensi) : partikel zat yang didispersikan berukuran lebih besar dari 100 nm.
B. Dispersi koloid
: partikel zat yang didispersikan berukuran antara 1 nm – 100 nm.
C. Dispersi molekuler
(larutan sejati) : partikel zat yang didispersikan berukuran lebih kecil dari 1 nm.
Sistem koloid pada hakekatnya terdiri atas dua fase, yaitu fase terdispersi dan medium pendispersi. Zat yang didispersikan disebut fase terdispersi sedangkan medium yang digunakan untuk mendispersikan disebut medium pendispersi.
JENIS KOLOID
Sistem koloid digolongkan berdasarkan pada jenis fase terdispersi dan medium pendispersinya.
- koloid yang mengandung fase terdispersi padat disebut sol.
- koloid yang mengandung fase terdispersi cair disebut emulsi.
- koloid yang mengandung fase terdispersi gas disebut buih.
Pengelompokan Koloid
Berdasarkan pada fase terdispersi dan medium pendisfersinya, sistem koloid dapat digolongkan sebagaimana seperti dalam berikut.
b.Jenis-jenis koloid
Macam-macam Koloid
• Aerosol : suatu sistem koloid, jika partikel padat atau cair terdispersi dalam gas. Contoh : debu, kabut, dan awan.
• Sol : suatu sistem koloid, jika partikel padat terdispersi dalam zat cair.
• Emulsi : suatu sistem koloid, jika partikel cair terdispersi dalam zat cair.
• Emulgator : zat yang dapat menstabilkan emulsi dan (Sabun adalah emulgator campuran air dan minyak dan Kasein adalah emulgator lemak dalam air?.
• Gel : koloid liofil yang setengah kaku.
• Gel terjadi jika medium pendispersi di absorbs oleh partikel koloid sehingga terjadi koloid yang agak padat. Larutan sabun dalam air yang pekat dan panas dapat berupa cairan tapi jika dingin membentuk gel yang relatif kaku. Jika dipanaskan akan mencair lagi.
Contoh koloid
Koloid Liofil dan Koloid Liofob
Sistem koloid dimana fase terdispersinya mempunyai daya adsorbsi relatif lebih besar disebut koloid liofil yang bersifat lebih stabil. Sedangkan jika partikel terdispersinya mempunyai daya adsorbsi relatif lebih lemah disebut koloid liofob yang bersifat kurang stabil. Sol liofil/liofob mudah terkoagulasi dengan sedikit penambahan larutan elektrolit.
• Koloid liofil (suka cairan). Koloid dimana terdapat gaya tarik menarik yang cukup besar antara fase terdispersi dengan medium pendispersi. Contoh, disperse kanji, sabun, dan deterjen.
• Koloid liofob (tidak suka cairan). Koloid dimana terdapat gaya tarik menarik antara fase terdispersi dengan medium pendispersi yang cukup lemah atau bahkan tidak ada sama sekali. Contoh, dispersi emas, belerang dalam air.
Perbedaan antara sol liofil dan liofob
Sifat-Sifat Koloid
Sifat-sifat khas koloid meliputi :
a. Efek Tyndall
Efek Tyndall adalah efek penghamburan cahaya oleh partikel koloid.
b. Gerak Brown
Gerak Brown adalah gerak acak, gerak tidak beraturan dari partikel koloid.
Koloid Fe(OH)3 bermuatan positif karena permukaannya menyerap ion H+
Koloid As2S3 bermuatan negatif karena permukaannya menyerap ion S2-
c. Adsorbsi
Beberapa partikel koloid mempunyai sifat adsorbsi (penyerapan) terhadap partikel atau ion atau senyawa yang lain.
Penyerapan pada permukaan ini disebut adsorbsi (harus dibedakan dari absorbsi yang artinya penyerapan sampai ke bawah permukaan).
Contoh :
(i) Koloid Fe(OH)3 bermuatan positif karena permukaannya menyerap ion H+.
(ii) Koloid As2S3 bermuatan negatit karena permukaannya menyerap ion S2.
d. Koagulasi
Koagulasi adalah penggumpalan partikel koloid dan membentuk endapan. Dengan terjadinya koagulasi, berarti zat terdispersi tidak lagi membentuk koloid.
Koagulasi dapat terjadi secara fisik seperti pemanasan, pendinginan dan pengadukan atau secara kimia seperti penambahan elektrolit, pencampuran koloid yang berbeda muatan.
e. Koloid Liofil dan Koloid Liofob
Koloid ini terjadi pada sol yaitu fase terdispersinya padatan dan medium pendispersinya cairan.
Koloid Liofil:
sistem koloid yang affinitas fase terdispersinya besar terhadap medium pendispersinya.
Contoh: sol kanji, agar-agar, lem, cat
Koloid Liofob:
sistem koloid yang affinitas fase terdispersinya kecil terhadap medium pendispersinya.
Contoh: sol belerang, sol emas.
Jumat, 26 Februari 2010
TERMOKIMIA
1)Definisi Termokimia dan Pengukuran Energi Dalam Reaksi Kimia
a.Definisi Termokimia
Termokimia dapat didefinisikan sebagai bagian ilmu kimia yang mempelajari dinamika atau perubahan reaksi kimia dengan mengamati panas/termal nya saja. Salah satu terapan ilmu ini dalam kehidupan sehari-hari ialah reaksi kimia dalam tubuh kita dimana produksi dari energi-energi yang dibutuhkan atau dikeluarkan untuk semua tugas yang kita lakukan. Pembakaran dari bahan bakar seperti minyak dan batu bara dipakai untuk pembangkit listrik. Bensin yang dibakar dalam mesin mobil akan menghasilkan kekuatan yang menyebabkan mobil berjalan. Bila kita mempunyai kompor gas berarti kita membakar gas metan (komponen utama dari gas alam) yang menghasilkan panas untuk memasak. Dan melalui urutan reaksi yang disebut metabolisme, makanan yang dimakan akan menghasilkan energi yang kita perlukan untuk tubuh agar berfungsi.
Hampir semua reaksi kimia selalu ada energi yang diambil atau dikeluarkan. Mari kita periksa terjadinya hal ini dan bagaimana kita mengetahui adanya perubahan energi.
b.Peristiwa termokimia
Misalkan kita akan melakukan reaksi kimia dalam suatu tempat tertutup sehingga tak ada panas yang dapat keluar atau masuk kedalam campuran reaksi tersebut. Atau reaksi dilakukan sedemikian rupa sehingga energi total tetap sama. Juga misalkan energi potensial dari hasil reaksi lebih rendah dari energi potensial pereaksi sehingga waktu reaksi terjadi ada penurunan energi potensial. Tetapi energi ini tak dapat hilang begitu saja karena energi total (kinetik dan potensial) harus tetap konstan. Sebab itu, bila energi potensialnya turun, maka energi kinetiknya harus naik berarti energi potensial berubah menjadi energi kinetik. Penambahan jumlah energi kinetik akan menyebabkan harga rata-rata energi kinetik dari molekulmolekul naik, yang kita lihat sebagai kenaikan temperatur dari campuran reaksi. Campuran reaksi menjadi panas.
Kebanyakan reaksi kimia tidaklah tertutup dari dunia luar. Bila campuran reaksi menjadi panas seperti digambarkan dibawah, panas dapat mengalir ke sekelilingnya. Setiap perubahan yang dapat melepaskan energi ke sekelilingnya seperti ini disebut perubahan eksoterm. Perhatikan bahwa bila terjadi reaksi eksoterm, temperatur dari campuran reaksi akan naik dan energi potensial dari zat-zat kimia yang bersangkutan akan turun.
Kadang-kadang perubahan kimia terjadi dimana ada kenaikan energi potensial dari zat-zat bersangkutan. Bila hal ini terjadi, maka energi kinetiknya akan turun sehingga temperaturnya juga turun. Bila sistem tidak tertutup di sekelilingnya, panas dapat mengalir ke campuran reaksi dan perubahannya disebut perubahan endoterm. Perhatikan bahwa bila terjadi suatu reaksi endoterm, temperatur dari campuran reaksi akan turun dan energi potensial dari zat-zat yang ikut dalam reaksi akan naik.
c.Peristiwa kebakaran menghasilkan panas
Pengukuran Energi Dalam Reaksi Kimia
Satuan internasional standar untuk energi yaitu Joule (J) diturunkan dari energi kinetik. Satu joule = 1 kgm2/s2. Setara dengan jumlah energi yang dipunyai suatu benda dengan massa 2 kg dan kecepatan 1 m/detik (bila dalam satuan Inggris, benda dengan massa 4,4 lb dan kecepatan 197 ft/menit atau 2,2 mile/jam).
1 J = 1 kg m2/s2
Satuan energi yang lebih kecil yang dipakai dalam fisika disebut erg yang harganya = 1×10-7 J. Dalam mengacu pada energi yang terlibat dalam reaksi antara pereaksi dengan ukuran molekul biasanya digantikan satuan yang lebih besar yaitu kilojoule (kJ). Satu kilojoule = 1000 joule (1 kJ = 1000J).
Semua bentuk energi dapat diubah keseluruhannya ke panas dan bila seorang ahli kimia mengukur energi, biasanya dalam bentuk kalor. Cara yang biasa digunakan untuk menyatakan panas disebut kalori (singkatan kal). Definisinya berasal dari pengaruh panas pada suhu benda. Mula-mula kalori didefinisikan sebagai jumlah panas yang diperlukan untuk menaikkan temperatur 1 gram air dengan suhu asal 150C sebesar 10C. Kilokalori (kkal) seperti juga kilojoule merupakan satuan yang lebih sesuai untuk menyatakan perubahan energi dalam reaksi kimia. Satuan kilokalori juga digunakan untuk menyatakan energi yang terdapat dalam makanan.
Dengan diterimanya SI, sekarang juga joule (atau kilojoule) lebih disukai dan kalori didefinisi ulang dalam satuan SI. Sekarang kalori dan kilokalori didefinisikan secara eksak sebagai berikut :
1 kal = 4,184 J
1 kkal = 4,184 kJ
2)Pengertian Reaksi Eksoterm dan Endoterm
Ditulis oleh Bambang Sugianto pada 07-06-2009
Perubahan entalpi (ΔH) positif menunjukkan bahwa dalam perubahan terdapat penyerapan kalor atau pelepasan kalor.
Reaksi kimia yang melepaskan atau mengeluarkan kalor disebut reaksi eksoterm, sedangkan reaksi kimia yang menyerap kalor disebut reaksi endoterm.
Pada reaksi endoterm, sistem menyerap energi. Oleh karena itu, entalpi sistem akan bertambah. Artinya entalpi produk (Hp) lebih besar daripada entalpi pereaksi (Hr). Akibatnya, perubahan entalpi, merupakan selisih antara entalpi produk dengan entalpi pereaksi (Hp -Hr) bertanda positif. Sehingga perubahan entalpi untuk reaksi endoterm dapat dinyatakan:
ΔH = Hp- Hr > 0 (13 )
Sebaliknya, pada reaksi eksoterm , sistem membebaskan energi, sehingga entalpi sistem akan berkurang, artinya entalpi produk lebih kecil daripada entalpi pereaksi. Oleh karena itu , perubahan entalpinya bertanda negatif. Sehingga p dapat dinyatakan sebagai berikut:
ΔH = Hp- Hr < 0 ( 14 ) Perubahan entalpi pada reaksi eksoterm dan endoterm dapat dinyatakan dengan diagram tingkat energi. Seperti pada gambar 12. berikut 3)Panas Reaksi dan Termokimia
Hubungan sistem dengan lingkungan
Pelajaran mengenai panas reaksi dinamakan termokimia yang merupakan bagian dari cabang ilmu pengetahuan yang lebih besar yaitu termodinamika. Sebelum pembicaraan mengenai prisip termokimia ini kita lanjutkan, akan dibuat dulu definisi dari beberapa istilah. Salah satu dari istilah yang akan dipakai adalah sistim. Sistim adalah sebagian dari alam semesta yang sedang kita pelajari. Mungkin saja misalnya suatu reaksi kimia yang terjadi dalam suatu gelas kimia. Di luar sistim adalah lingkungan. Dalam menerangkan suatu sistim, kita harus memperinci sifat-sifatnya secara tepat. Diberikan suhunya, tekanan, jumlah mol dari tiap zat dan berupa cairan, padat atau gas. Setelah semua variabel ini ditentukan berarti semua sifat-sifat sistim sudah pasti, berarti kita telah menggambarkan keadaan dari sistim.
Bila perubahan terjadi pada sebuah sistim maka dikatakan bahwa sistim bergerak dari keadaan satu ke keadaan yang lain. Bila sistim diisolasi dari lingkungan sehingga tak ada panas yang dapat mengalir maka perubahan yang terjadi di dalam sistim adalah perubahan adiabatik. Selama ada perubahan adiabatik, maka suhu dari sistim akan menggeser, bila reaksinya eksotermik akan naik sedangkan bila reaksinya endotermik akan turun. Bila sistim tak diisolasi dari lingkungannya, maka panas akan mengalir antara keduanya, maka bila terjadi reaksi, suhu dari sistim dapat dibuat tetap. Perubahan yang terjadi pada temperatur tetap dinamakan perubahan isotermik. Telah dikatakan, bila terjadi reaksi eksotermik atau endotermik maka pada zat-zat kimia yang terlibat akan terjadi perubahan energi potensial. Panas reaksi yang kita ukur akan sama dengan perubahan energi potensial ini. Mulai sekarang kita akan menggunakan perubahan ini dalam beberapa kuantitas sehingga perlu ditegakkan beberapa peraturan untuk menyatakan perubahan secara umum.
Simbol Δ (huruf Yunani untuk delta) umumnya dipakai untuk menyatakan perubahan kuantitas. Misalnya perubahan suhu dapat ditulis dengan ΔT, dimana T menunjukkan temperatur. Dalam praktek biasanya dalam menunjukkan perubahan adalah dengan cara mengurangi temperatur akhir dengan temperatur mula-mula.
ΔT = Takhir – Tmula-mula
Demikian juga, perubahan energi potensial
(Ep) Δ(E.P) = EPakhir – EPawal
Dari definisi ini didapat suatu kesepakatan dalam tanda aljabar untuk perubahan eksoterm dan endoterm. Dalam perubahan eksotermik, energi potensial dari hasil reaksi lebih rendah dari energi potensial pereaksi berarti EPakhir lebih rendah dari EPmula-mula. Sehingga harga ÷EP mempunyai harga negatif. Kebalikannya dengan reaksi endoterm, dimana harga ÷EP adalah positif.
Reaksi Eksoterm dan Endoterm
4)Peristiwa endoterm dan eksoterm
a.Reaksi Eksoterm
Pada reaksi eksoterm terjadi perpindahan kalor dari sistem ke lingkungan atau pada reaksi tersebut dikeluarkan panas. Pada reaksi eksoterm harga ΔH = negatif ( – )
Contoh :
C(s) + O2(g) → CO2(g) + 393.5 kJ ;
ΔH = -393.5 kJ
b.Reaksi Endoterm
Pada reaksi terjadi perpindahan kalor dari lingkungan ke sistem atau pada reaksi tersebut dibutuhkan panas. Pada reaksi endoterm harga ΔH = positif ( + )
Contoh :
CaCO3(s) → CaO(s) + CO2(g)- 178.5 kJ ; ΔH = +178.5 kJ
a.Definisi Termokimia
Termokimia dapat didefinisikan sebagai bagian ilmu kimia yang mempelajari dinamika atau perubahan reaksi kimia dengan mengamati panas/termal nya saja. Salah satu terapan ilmu ini dalam kehidupan sehari-hari ialah reaksi kimia dalam tubuh kita dimana produksi dari energi-energi yang dibutuhkan atau dikeluarkan untuk semua tugas yang kita lakukan. Pembakaran dari bahan bakar seperti minyak dan batu bara dipakai untuk pembangkit listrik. Bensin yang dibakar dalam mesin mobil akan menghasilkan kekuatan yang menyebabkan mobil berjalan. Bila kita mempunyai kompor gas berarti kita membakar gas metan (komponen utama dari gas alam) yang menghasilkan panas untuk memasak. Dan melalui urutan reaksi yang disebut metabolisme, makanan yang dimakan akan menghasilkan energi yang kita perlukan untuk tubuh agar berfungsi.
Hampir semua reaksi kimia selalu ada energi yang diambil atau dikeluarkan. Mari kita periksa terjadinya hal ini dan bagaimana kita mengetahui adanya perubahan energi.
b.Peristiwa termokimia
Misalkan kita akan melakukan reaksi kimia dalam suatu tempat tertutup sehingga tak ada panas yang dapat keluar atau masuk kedalam campuran reaksi tersebut. Atau reaksi dilakukan sedemikian rupa sehingga energi total tetap sama. Juga misalkan energi potensial dari hasil reaksi lebih rendah dari energi potensial pereaksi sehingga waktu reaksi terjadi ada penurunan energi potensial. Tetapi energi ini tak dapat hilang begitu saja karena energi total (kinetik dan potensial) harus tetap konstan. Sebab itu, bila energi potensialnya turun, maka energi kinetiknya harus naik berarti energi potensial berubah menjadi energi kinetik. Penambahan jumlah energi kinetik akan menyebabkan harga rata-rata energi kinetik dari molekulmolekul naik, yang kita lihat sebagai kenaikan temperatur dari campuran reaksi. Campuran reaksi menjadi panas.
Kebanyakan reaksi kimia tidaklah tertutup dari dunia luar. Bila campuran reaksi menjadi panas seperti digambarkan dibawah, panas dapat mengalir ke sekelilingnya. Setiap perubahan yang dapat melepaskan energi ke sekelilingnya seperti ini disebut perubahan eksoterm. Perhatikan bahwa bila terjadi reaksi eksoterm, temperatur dari campuran reaksi akan naik dan energi potensial dari zat-zat kimia yang bersangkutan akan turun.
Kadang-kadang perubahan kimia terjadi dimana ada kenaikan energi potensial dari zat-zat bersangkutan. Bila hal ini terjadi, maka energi kinetiknya akan turun sehingga temperaturnya juga turun. Bila sistem tidak tertutup di sekelilingnya, panas dapat mengalir ke campuran reaksi dan perubahannya disebut perubahan endoterm. Perhatikan bahwa bila terjadi suatu reaksi endoterm, temperatur dari campuran reaksi akan turun dan energi potensial dari zat-zat yang ikut dalam reaksi akan naik.
c.Peristiwa kebakaran menghasilkan panas
Pengukuran Energi Dalam Reaksi Kimia
Satuan internasional standar untuk energi yaitu Joule (J) diturunkan dari energi kinetik. Satu joule = 1 kgm2/s2. Setara dengan jumlah energi yang dipunyai suatu benda dengan massa 2 kg dan kecepatan 1 m/detik (bila dalam satuan Inggris, benda dengan massa 4,4 lb dan kecepatan 197 ft/menit atau 2,2 mile/jam).
1 J = 1 kg m2/s2
Satuan energi yang lebih kecil yang dipakai dalam fisika disebut erg yang harganya = 1×10-7 J. Dalam mengacu pada energi yang terlibat dalam reaksi antara pereaksi dengan ukuran molekul biasanya digantikan satuan yang lebih besar yaitu kilojoule (kJ). Satu kilojoule = 1000 joule (1 kJ = 1000J).
Semua bentuk energi dapat diubah keseluruhannya ke panas dan bila seorang ahli kimia mengukur energi, biasanya dalam bentuk kalor. Cara yang biasa digunakan untuk menyatakan panas disebut kalori (singkatan kal). Definisinya berasal dari pengaruh panas pada suhu benda. Mula-mula kalori didefinisikan sebagai jumlah panas yang diperlukan untuk menaikkan temperatur 1 gram air dengan suhu asal 150C sebesar 10C. Kilokalori (kkal) seperti juga kilojoule merupakan satuan yang lebih sesuai untuk menyatakan perubahan energi dalam reaksi kimia. Satuan kilokalori juga digunakan untuk menyatakan energi yang terdapat dalam makanan.
Dengan diterimanya SI, sekarang juga joule (atau kilojoule) lebih disukai dan kalori didefinisi ulang dalam satuan SI. Sekarang kalori dan kilokalori didefinisikan secara eksak sebagai berikut :
1 kal = 4,184 J
1 kkal = 4,184 kJ
2)Pengertian Reaksi Eksoterm dan Endoterm
Ditulis oleh Bambang Sugianto pada 07-06-2009
Perubahan entalpi (ΔH) positif menunjukkan bahwa dalam perubahan terdapat penyerapan kalor atau pelepasan kalor.
Reaksi kimia yang melepaskan atau mengeluarkan kalor disebut reaksi eksoterm, sedangkan reaksi kimia yang menyerap kalor disebut reaksi endoterm.
Pada reaksi endoterm, sistem menyerap energi. Oleh karena itu, entalpi sistem akan bertambah. Artinya entalpi produk (Hp) lebih besar daripada entalpi pereaksi (Hr). Akibatnya, perubahan entalpi, merupakan selisih antara entalpi produk dengan entalpi pereaksi (Hp -Hr) bertanda positif. Sehingga perubahan entalpi untuk reaksi endoterm dapat dinyatakan:
ΔH = Hp- Hr > 0 (13 )
Sebaliknya, pada reaksi eksoterm , sistem membebaskan energi, sehingga entalpi sistem akan berkurang, artinya entalpi produk lebih kecil daripada entalpi pereaksi. Oleh karena itu , perubahan entalpinya bertanda negatif. Sehingga p dapat dinyatakan sebagai berikut:
ΔH = Hp- Hr < 0 ( 14 ) Perubahan entalpi pada reaksi eksoterm dan endoterm dapat dinyatakan dengan diagram tingkat energi. Seperti pada gambar 12. berikut 3)Panas Reaksi dan Termokimia
Hubungan sistem dengan lingkungan
Pelajaran mengenai panas reaksi dinamakan termokimia yang merupakan bagian dari cabang ilmu pengetahuan yang lebih besar yaitu termodinamika. Sebelum pembicaraan mengenai prisip termokimia ini kita lanjutkan, akan dibuat dulu definisi dari beberapa istilah. Salah satu dari istilah yang akan dipakai adalah sistim. Sistim adalah sebagian dari alam semesta yang sedang kita pelajari. Mungkin saja misalnya suatu reaksi kimia yang terjadi dalam suatu gelas kimia. Di luar sistim adalah lingkungan. Dalam menerangkan suatu sistim, kita harus memperinci sifat-sifatnya secara tepat. Diberikan suhunya, tekanan, jumlah mol dari tiap zat dan berupa cairan, padat atau gas. Setelah semua variabel ini ditentukan berarti semua sifat-sifat sistim sudah pasti, berarti kita telah menggambarkan keadaan dari sistim.
Bila perubahan terjadi pada sebuah sistim maka dikatakan bahwa sistim bergerak dari keadaan satu ke keadaan yang lain. Bila sistim diisolasi dari lingkungan sehingga tak ada panas yang dapat mengalir maka perubahan yang terjadi di dalam sistim adalah perubahan adiabatik. Selama ada perubahan adiabatik, maka suhu dari sistim akan menggeser, bila reaksinya eksotermik akan naik sedangkan bila reaksinya endotermik akan turun. Bila sistim tak diisolasi dari lingkungannya, maka panas akan mengalir antara keduanya, maka bila terjadi reaksi, suhu dari sistim dapat dibuat tetap. Perubahan yang terjadi pada temperatur tetap dinamakan perubahan isotermik. Telah dikatakan, bila terjadi reaksi eksotermik atau endotermik maka pada zat-zat kimia yang terlibat akan terjadi perubahan energi potensial. Panas reaksi yang kita ukur akan sama dengan perubahan energi potensial ini. Mulai sekarang kita akan menggunakan perubahan ini dalam beberapa kuantitas sehingga perlu ditegakkan beberapa peraturan untuk menyatakan perubahan secara umum.
Simbol Δ (huruf Yunani untuk delta) umumnya dipakai untuk menyatakan perubahan kuantitas. Misalnya perubahan suhu dapat ditulis dengan ΔT, dimana T menunjukkan temperatur. Dalam praktek biasanya dalam menunjukkan perubahan adalah dengan cara mengurangi temperatur akhir dengan temperatur mula-mula.
ΔT = Takhir – Tmula-mula
Demikian juga, perubahan energi potensial
(Ep) Δ(E.P) = EPakhir – EPawal
Dari definisi ini didapat suatu kesepakatan dalam tanda aljabar untuk perubahan eksoterm dan endoterm. Dalam perubahan eksotermik, energi potensial dari hasil reaksi lebih rendah dari energi potensial pereaksi berarti EPakhir lebih rendah dari EPmula-mula. Sehingga harga ÷EP mempunyai harga negatif. Kebalikannya dengan reaksi endoterm, dimana harga ÷EP adalah positif.
Reaksi Eksoterm dan Endoterm
4)Peristiwa endoterm dan eksoterm
a.Reaksi Eksoterm
Pada reaksi eksoterm terjadi perpindahan kalor dari sistem ke lingkungan atau pada reaksi tersebut dikeluarkan panas. Pada reaksi eksoterm harga ΔH = negatif ( – )
Contoh :
C(s) + O2(g) → CO2(g) + 393.5 kJ ;
ΔH = -393.5 kJ
b.Reaksi Endoterm
Pada reaksi terjadi perpindahan kalor dari lingkungan ke sistem atau pada reaksi tersebut dibutuhkan panas. Pada reaksi endoterm harga ΔH = positif ( + )
Contoh :
CaCO3(s) → CaO(s) + CO2(g)- 178.5 kJ ; ΔH = +178.5 kJ
5)Entalpi dan Perubahan Entalpi
Kalorimeter Bomb
Reaksi yang terjadi dalam “kalorimeter bomb” berada pada volume yang tetap karena bejana bomb tak dapat membesar atau mengecil. Berarti bila gas terbentuk pada reaksi di sini, tekanan akan membesar maka tekanan pada sistim dapat berubah. Karena pada keadaan volume yang tetap maka panas reaksi yang diukur dengan kalorimeter bomb disebut panas reaksi pada volume tetap. Kalorimeter cangkir kopi berhubungan dengan udara dan bila ada reaksi yang menghasilkan gas, gasnya dapat menguap ke udara dan tekanan pada sistim dapat tetap konstan. Maka perubahan energi diukur dengan kalorimeter cangkir kopi adalah panas reaksi pada tekanan tetap.
Pengukuran panas reaksi pada reaksi pada volume tetap dan tekanan tetap tak banyak berbeda tapi tidak sama. Karena kebanyakan reaksi yang ada kepentingannya bagi kita dilakukan dalam wadah terbuka jadi berhubungan dengan tekanan udara yang tetap dari atmosfir, maka akan dibicarakan hanya panas reaksi pada tekanan tetap, dan reaksi dan diberikan dengan simbol ΔH.
Definisinya:
ΔH = Hakhir – Hmula-mula
Walaupun ini merupakan definisi yang biasa dari ΔH, keadaan entalpi H, mula-mula dan akhir (yang sebenarnya berhubungan dengan jumlah energi yang ada pada keadaan ini) tak dapat diukur. Ini disebabkan karena jumlah energi dari sistem termasuk jumlah dari semua energi kinetik dan energi potensialnya. Jumlah energi total ini tidak dapat diketahui karena kita tidak mengetahui secara pasti berapa kecepatan pergerakan molekul-molekul dari sistim dan juga berapa gaya tarik menarik dan tolak menolak antara molekul dalam sistim tersebut. Bagaimanapun definisi yang diberikan oleh persamaan yang diatas sangat penting karena telah menegakkan tanda aljabar ΔH untuk perubahan eksoterm dan endotermik. Perubahan eksotermik Hakhir lebih kecil dari Hmula-mula. Sehingga harga ΔH adalah negatif. Dengan analisis yang sama kita mendapatkan harga ΔH untuk perubahan endotermik harganya positif.
Perubahan Entalpi
Entalpi = H = Kalor reaksi pada tekanan tetap = Qp
Perubahan entalpi adalah perubahan energi yang menyertai peristiwa perubahan kimia pada tekanan tetap.
a. Pemutusan ikatan membutuhkan energi (= endoterm)
Contoh: H2 → 2H – a kJ ; DH= +akJ
b. Pembentukan ikatan memberikan energi (= eksoterm)
Contoh: 2H → H2 + a kJ ; DH = -a kJ
Istilah yang digunakan pada perubahan entalpi :
1. Entalpi Pembentakan Standar ( DHf ):
DH untak membentuk 1 mol persenyawaan langsung dari unsur-unsurnya yang diukur pada 298 K dan tekanan 1 atm.
Contoh: H2(g) + 1/2 O2(g) → H20 (l) ; DHf = -285.85 kJ
2. Entalpi Penguraian:
DH dari penguraian 1 mol persenyawaan langsung menjadi unsur-unsurnya (= Kebalikan dari DH pembentukan).
Contoh: H2O (l) → H2(g) + 1/2 O2(g) ; DH = +285.85 kJ
3. Entalpi Pembakaran Standar ( DHc ):
DH untuk membakar 1 mol persenyawaan dengan O2 dari udara yang diukur pada 298 K dan tekanan 1 atm.
Contoh: CH4(g) + 2O2(g) → CO2(g) + 2H2O(l) ; DHc = -802 kJ
4. Entalpi Reaksi:
DH dari suatu persamaan reaksi di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan koefisien-koefisien persamaan reaksi bulat sederhana.
Contoh: 2Al + 3H2SO4 → Al2(SO4)3 + 3H2 ; DH = -1468 kJ
5. Entalpi Netralisasi:
DH yang dihasilkan (selalu eksoterm) pada reaksi penetralan asam atau basa.
Contoh: NaOH(aq) + HCl(aq) → NaCl(aq) + H2O(l) ; DH = -890.4 kJ/mol
6. Hukum Lavoisier-Laplace
“Jumlah kalor yang dilepaskan pada pembentukan 1 mol zat dari unsur-unsurya = jumlah kalor yang diperlukan untuk menguraikan zat tersebut menjadi unsur-unsur pembentuknya.”
Artinya : Apabila reaksi dibalik maka tanda kalor yang terbentuk juga dibalik dari positif menjadi negatif atau sebaliknya
Contoh:
N2(g) + 3H2(g) → 2NH3(g) ; DH = – 112 kJ
2NH3(g) → N2(g) + 3H2(g) ; DH = + 112 kJ
6)Istilah yang Digunakan Pada Perubahan Entalpi
Istilah yang digunakan pada perubahan entalpi :
Perubahan Entalphi
• Entalpi Pembentakan Standar ( ΔHf ):
ΔH untuk membentuk 1 mol persenyawaan langsung dari unsurunsurnya yang diukur pada 298 K dan tekanan 1 atm.
Contoh : H2(g) + 1/2 O2(g) o H2O (l) ; ΔHf = -285.85 kJ
• Entalpi Penguraian:
ΔH dari penguraian 1 mol persenyawaan langsung menjadi unsur-unsurnya (= Kebalikan dari ΔH pembentukan).
Contoh : H2O(l) o H2(g) + 1/2 O2(g) ; ΔH = +285.85 kJ.
• Entalpi Pembakaran Standar (ΔHc ):
ΔH untuk membakar 1 mol persenyawaan dengan O2 dari udara yang diukur pada 298 K dan tekanan 1 atm.
Contoh: CH4(g) + 2O2(g) o CO2(g) + 2H2O(l) ; ΔHc = -802 kJ.
• Entalpi Reaksi:
ΔH dari suatu persamaan reaksi di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan koefisien-koefisien persamaan reaksi bulat sederhana.
Contoh: 2Al + 3H2SO4 o Al2(SO4)3 + 3H2 ; ΔH = -1468 kJ
• Entalpi Netralisasi:
ΔH yang dihasilkan (selalu eksoterm) pada reaksi penetralan asam atau basa.
Contoh: NaOH(aq) + HCl(aq) o NaCl(aq) + H2O(l); ΔH = -890.4 kJ/mol
• Hukum Lavoisier-Laplace
Jumlah kalor yang dilepaskan pada pembentukan 1 mol zat dari unsur-unsurnya sama dengan jumlah kalor yang diperlukan untuk menguraikan zat tersebut menjadi unsur-unsur pembentuknya. Artinya : Apabila reaksi dibalik maka tanda kalor yang terbentuk juga dibalik dari positif menjadi negatif atau sebaliknya.
Contoh:
N2(g) + 3H2 o 2NH3 ΔH = – 112 kJ
2NH3(g) o N2(g) + 3H2(g) ; ΔH = + 112 kJ
7)Entalpi Pembakaran
Reaksi suatu zat dengan oksigen disebut reaksi pembakaran. Zat yang mudah terbakar adalah unsur karbon, hidrogen, belerang, dan berbagai senyawa dari unsur tersebut. Pembakaran dikatakan sempurna apabila karbon (c) terbakar menjadi CO2, hidrogen (H) terbakar menjadi H2O, belerang (S) terbakar menjadi SO2.
Perubahan entalpi pada pembakaran sempurna 1 mol suatu zat yang diukur pada 298 K, 1 atm disebut entalpi pembakaran standar (standard enthalpy of combustion), yang dinyatakan dengan ΔHc0 . Entalpi pembakaran juga dinyatakan dalam kJ mol -1 .
Harga entalpi pembakaran dari berbagai zat pada 298 K, 1 atm diberikan pada tabel 3 berikut.
Pembakaran bensin adalah suatu proses eksoterm. Apabila bensin dianggap terdiri atas isooktana, C8H18 (salah satu komponen bensin) tentukanlah jumlah kalor yang dibebaskan pada pembakaran 1 liter bensin. Diketahui entalpi pembakaran isooktana = -5460 kJ mol-1 dan massa jenis isooktan = 0,7 kg L -1 (H = 1; C =12).
Jawab:
Entalpi pembakaran isooktana yaitu – 5460 kJ mol-1 . Massa 1 liter bensin = 1 liter x 0,7 kg L-1 = 0,7 kg = 700 gram . Mol isooktana = 700 gram/114 gram mol-1 = 6,14 mol. Jadi kalor yang dibebaskan pada pembakaran 1 liter bensin adalah: 6,14 mol x 5460 kJ mol -1 = 33524,4 kJ.
Entalpi Penguraian
Reaksi penguraian adalah kebalikan dari reaksi pembentukan. Oleh karena itu, sesuai dengan azas kekekalan energi, nilai entalpi penguraian sama dengan entalpi pembentukannya, tetapi tandanya berlawanan.
Contoh:
Diketahui ΔHf 0 H2O (l) = -286 kJ mol -1, maka entalpi penguraian H2O (l) menjadi gas hidrogen dan gas oksigen adalah + 286 kJ mol-1
H2O (l) ——> H2 (g) + ½ O2 (g) ΔH = + 286 kJ
8)Entalpi Pembentukan
Perubahan entalpi pada pembentukan 1 mol zat langsung dari unsur-unsurnya disebut entalpi molar pembentukan atau entalpi pembentukan. Jika pengukuran dilakukan pada keadaan standar (298 k, 1 atm) dan semua unsur-unsurnya dalam bentuk standar, maka perubahan entalpinya disebut entalpi pembentukan standar (ΔHf 0). Entalpi pembentukan dinyatakan dalam kJ per mol (kJ mol -1).
Supaya terdapat keseragaman, maka harus ditetapkan keadaan standar, yaitu suhu 25 0 C dan tekanan 1 atm. Dengan demikian perhitungan termokimia didasarkan pada keadaan standar.
Pada umumnya dalam persamaan termokimia dinyatakan:
AB + CD ———-> AC + BD Δ H0 = x kJ/mol
Δ H0 adalah lambang dari perubahan entalpi pada keadaan itu. Yang dimaksud dengan bentuk standar dari suatu unsur adalah bentuk yang paling stabil dari unsur itu pada kondisi standar (298 K, 1 atm).
Untuk unsur yang mempunyai bentuk alotropi, bentuk standarnya ditetapkan berdasarkan pengertian tersebut. Misalnya, karbon yang dapat berbentuk intan dan grafit, bentuk standarnya adalah grafit, karena grafit adalah bentuk karbon yang paling stabil pada 298 K, 1 atm. Dua hal yang perlu diperhatikan berkaitan dengan entalpi pembentukan yaitu bahwa zat yang dibentuk adalah 1 mol dan dibentuk dari unsurnya dalam bentuk standar.
Contoh: Entalpi pembentukan etanol (C2H5OH) (l) adalah -277,7 kJ per mol. Hal ini berarti: Pada pembentukan 1 mol (46 gram) etanol dari unsur-unsurnya dalam bentuk standar, yaitu karbon (grafit), gas hidrogen dan gas oksigen, yang diukur pada 298 K, 1 atm dibebaskan 277,7 kJ dengan persamaan termokimianya adalah:
2 C (s, grafit) + 3H2 (g) + ½ O2 (g) –> C2 H5 OH (l) ΔH = -277,7kJ
Nilai entalpi pembentukan dari berbagai zat serta persamaan termokimia reaksi pembentukannya diberikan pada tabel 2 berikut.
Tabel 2. Nilai entalpi pembentukan berbagai zat & Persamaan termokimia reaksi pembentukannya
9)Entalpi Pembentukan, Penguraian dan Pembakaran
Harga perubahan entalpi reaksi dapat dipengaruhi oleh kondisi yakni suhu dan tekanan saat pengukuran. Oleh karena itu, perlu kondisi suhu dan tekanan perlu dicantumkan untuk setiap data termokimia.
Data termokimia pada umumnya ditetapkan pada suhu 25 0 C dan tekanan 1 atm yang selanjutnya disebut kondisi standar. Perubahan entalpi yang diukur pada suhu 25 0 C dan tekanan 1 atm disebut perubahan entalpi standar dan dinyatakan dengan lambang Δ H0 atau ΔH298. Sedangkan perubahan entalpi yang pengukurannya tidak merujuk kondisi pengukurannya dinyatakan dengan lambang ΔH saja.
Entalpi molar adalah perubahan entalpi reaksi yang dikaitkan dengan kuantitas zat yang terlibat dalam reaksi. Dalam termokimia dikenal berbagai macam entalpi molar, seperti entalpi pembentukan, entalpi penguraian, dan entalpi pembakaran.
Kalorimeter Bomb
Reaksi yang terjadi dalam “kalorimeter bomb” berada pada volume yang tetap karena bejana bomb tak dapat membesar atau mengecil. Berarti bila gas terbentuk pada reaksi di sini, tekanan akan membesar maka tekanan pada sistim dapat berubah. Karena pada keadaan volume yang tetap maka panas reaksi yang diukur dengan kalorimeter bomb disebut panas reaksi pada volume tetap. Kalorimeter cangkir kopi berhubungan dengan udara dan bila ada reaksi yang menghasilkan gas, gasnya dapat menguap ke udara dan tekanan pada sistim dapat tetap konstan. Maka perubahan energi diukur dengan kalorimeter cangkir kopi adalah panas reaksi pada tekanan tetap.
Pengukuran panas reaksi pada reaksi pada volume tetap dan tekanan tetap tak banyak berbeda tapi tidak sama. Karena kebanyakan reaksi yang ada kepentingannya bagi kita dilakukan dalam wadah terbuka jadi berhubungan dengan tekanan udara yang tetap dari atmosfir, maka akan dibicarakan hanya panas reaksi pada tekanan tetap, dan reaksi dan diberikan dengan simbol ΔH.
Definisinya:
ΔH = Hakhir – Hmula-mula
Walaupun ini merupakan definisi yang biasa dari ΔH, keadaan entalpi H, mula-mula dan akhir (yang sebenarnya berhubungan dengan jumlah energi yang ada pada keadaan ini) tak dapat diukur. Ini disebabkan karena jumlah energi dari sistem termasuk jumlah dari semua energi kinetik dan energi potensialnya. Jumlah energi total ini tidak dapat diketahui karena kita tidak mengetahui secara pasti berapa kecepatan pergerakan molekul-molekul dari sistim dan juga berapa gaya tarik menarik dan tolak menolak antara molekul dalam sistim tersebut. Bagaimanapun definisi yang diberikan oleh persamaan yang diatas sangat penting karena telah menegakkan tanda aljabar ΔH untuk perubahan eksoterm dan endotermik. Perubahan eksotermik Hakhir lebih kecil dari Hmula-mula. Sehingga harga ΔH adalah negatif. Dengan analisis yang sama kita mendapatkan harga ΔH untuk perubahan endotermik harganya positif.
Perubahan Entalpi
Entalpi = H = Kalor reaksi pada tekanan tetap = Qp
Perubahan entalpi adalah perubahan energi yang menyertai peristiwa perubahan kimia pada tekanan tetap.
a. Pemutusan ikatan membutuhkan energi (= endoterm)
Contoh: H2 → 2H – a kJ ; DH= +akJ
b. Pembentukan ikatan memberikan energi (= eksoterm)
Contoh: 2H → H2 + a kJ ; DH = -a kJ
Istilah yang digunakan pada perubahan entalpi :
1. Entalpi Pembentakan Standar ( DHf ):
DH untak membentuk 1 mol persenyawaan langsung dari unsur-unsurnya yang diukur pada 298 K dan tekanan 1 atm.
Contoh: H2(g) + 1/2 O2(g) → H20 (l) ; DHf = -285.85 kJ
2. Entalpi Penguraian:
DH dari penguraian 1 mol persenyawaan langsung menjadi unsur-unsurnya (= Kebalikan dari DH pembentukan).
Contoh: H2O (l) → H2(g) + 1/2 O2(g) ; DH = +285.85 kJ
3. Entalpi Pembakaran Standar ( DHc ):
DH untuk membakar 1 mol persenyawaan dengan O2 dari udara yang diukur pada 298 K dan tekanan 1 atm.
Contoh: CH4(g) + 2O2(g) → CO2(g) + 2H2O(l) ; DHc = -802 kJ
4. Entalpi Reaksi:
DH dari suatu persamaan reaksi di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan koefisien-koefisien persamaan reaksi bulat sederhana.
Contoh: 2Al + 3H2SO4 → Al2(SO4)3 + 3H2 ; DH = -1468 kJ
5. Entalpi Netralisasi:
DH yang dihasilkan (selalu eksoterm) pada reaksi penetralan asam atau basa.
Contoh: NaOH(aq) + HCl(aq) → NaCl(aq) + H2O(l) ; DH = -890.4 kJ/mol
6. Hukum Lavoisier-Laplace
“Jumlah kalor yang dilepaskan pada pembentukan 1 mol zat dari unsur-unsurya = jumlah kalor yang diperlukan untuk menguraikan zat tersebut menjadi unsur-unsur pembentuknya.”
Artinya : Apabila reaksi dibalik maka tanda kalor yang terbentuk juga dibalik dari positif menjadi negatif atau sebaliknya
Contoh:
N2(g) + 3H2(g) → 2NH3(g) ; DH = – 112 kJ
2NH3(g) → N2(g) + 3H2(g) ; DH = + 112 kJ
6)Istilah yang Digunakan Pada Perubahan Entalpi
Istilah yang digunakan pada perubahan entalpi :
Perubahan Entalphi
• Entalpi Pembentakan Standar ( ΔHf ):
ΔH untuk membentuk 1 mol persenyawaan langsung dari unsurunsurnya yang diukur pada 298 K dan tekanan 1 atm.
Contoh : H2(g) + 1/2 O2(g) o H2O (l) ; ΔHf = -285.85 kJ
• Entalpi Penguraian:
ΔH dari penguraian 1 mol persenyawaan langsung menjadi unsur-unsurnya (= Kebalikan dari ΔH pembentukan).
Contoh : H2O(l) o H2(g) + 1/2 O2(g) ; ΔH = +285.85 kJ.
• Entalpi Pembakaran Standar (ΔHc ):
ΔH untuk membakar 1 mol persenyawaan dengan O2 dari udara yang diukur pada 298 K dan tekanan 1 atm.
Contoh: CH4(g) + 2O2(g) o CO2(g) + 2H2O(l) ; ΔHc = -802 kJ.
• Entalpi Reaksi:
ΔH dari suatu persamaan reaksi di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan koefisien-koefisien persamaan reaksi bulat sederhana.
Contoh: 2Al + 3H2SO4 o Al2(SO4)3 + 3H2 ; ΔH = -1468 kJ
• Entalpi Netralisasi:
ΔH yang dihasilkan (selalu eksoterm) pada reaksi penetralan asam atau basa.
Contoh: NaOH(aq) + HCl(aq) o NaCl(aq) + H2O(l); ΔH = -890.4 kJ/mol
• Hukum Lavoisier-Laplace
Jumlah kalor yang dilepaskan pada pembentukan 1 mol zat dari unsur-unsurnya sama dengan jumlah kalor yang diperlukan untuk menguraikan zat tersebut menjadi unsur-unsur pembentuknya. Artinya : Apabila reaksi dibalik maka tanda kalor yang terbentuk juga dibalik dari positif menjadi negatif atau sebaliknya.
Contoh:
N2(g) + 3H2 o 2NH3 ΔH = – 112 kJ
2NH3(g) o N2(g) + 3H2(g) ; ΔH = + 112 kJ
7)Entalpi Pembakaran
Reaksi suatu zat dengan oksigen disebut reaksi pembakaran. Zat yang mudah terbakar adalah unsur karbon, hidrogen, belerang, dan berbagai senyawa dari unsur tersebut. Pembakaran dikatakan sempurna apabila karbon (c) terbakar menjadi CO2, hidrogen (H) terbakar menjadi H2O, belerang (S) terbakar menjadi SO2.
Perubahan entalpi pada pembakaran sempurna 1 mol suatu zat yang diukur pada 298 K, 1 atm disebut entalpi pembakaran standar (standard enthalpy of combustion), yang dinyatakan dengan ΔHc0 . Entalpi pembakaran juga dinyatakan dalam kJ mol -1 .
Harga entalpi pembakaran dari berbagai zat pada 298 K, 1 atm diberikan pada tabel 3 berikut.
Pembakaran bensin adalah suatu proses eksoterm. Apabila bensin dianggap terdiri atas isooktana, C8H18 (salah satu komponen bensin) tentukanlah jumlah kalor yang dibebaskan pada pembakaran 1 liter bensin. Diketahui entalpi pembakaran isooktana = -5460 kJ mol-1 dan massa jenis isooktan = 0,7 kg L -1 (H = 1; C =12).
Jawab:
Entalpi pembakaran isooktana yaitu – 5460 kJ mol-1 . Massa 1 liter bensin = 1 liter x 0,7 kg L-1 = 0,7 kg = 700 gram . Mol isooktana = 700 gram/114 gram mol-1 = 6,14 mol. Jadi kalor yang dibebaskan pada pembakaran 1 liter bensin adalah: 6,14 mol x 5460 kJ mol -1 = 33524,4 kJ.
Entalpi Penguraian
Reaksi penguraian adalah kebalikan dari reaksi pembentukan. Oleh karena itu, sesuai dengan azas kekekalan energi, nilai entalpi penguraian sama dengan entalpi pembentukannya, tetapi tandanya berlawanan.
Contoh:
Diketahui ΔHf 0 H2O (l) = -286 kJ mol -1, maka entalpi penguraian H2O (l) menjadi gas hidrogen dan gas oksigen adalah + 286 kJ mol-1
H2O (l) ——> H2 (g) + ½ O2 (g) ΔH = + 286 kJ
8)Entalpi Pembentukan
Perubahan entalpi pada pembentukan 1 mol zat langsung dari unsur-unsurnya disebut entalpi molar pembentukan atau entalpi pembentukan. Jika pengukuran dilakukan pada keadaan standar (298 k, 1 atm) dan semua unsur-unsurnya dalam bentuk standar, maka perubahan entalpinya disebut entalpi pembentukan standar (ΔHf 0). Entalpi pembentukan dinyatakan dalam kJ per mol (kJ mol -1).
Supaya terdapat keseragaman, maka harus ditetapkan keadaan standar, yaitu suhu 25 0 C dan tekanan 1 atm. Dengan demikian perhitungan termokimia didasarkan pada keadaan standar.
Pada umumnya dalam persamaan termokimia dinyatakan:
AB + CD ———-> AC + BD Δ H0 = x kJ/mol
Δ H0 adalah lambang dari perubahan entalpi pada keadaan itu. Yang dimaksud dengan bentuk standar dari suatu unsur adalah bentuk yang paling stabil dari unsur itu pada kondisi standar (298 K, 1 atm).
Untuk unsur yang mempunyai bentuk alotropi, bentuk standarnya ditetapkan berdasarkan pengertian tersebut. Misalnya, karbon yang dapat berbentuk intan dan grafit, bentuk standarnya adalah grafit, karena grafit adalah bentuk karbon yang paling stabil pada 298 K, 1 atm. Dua hal yang perlu diperhatikan berkaitan dengan entalpi pembentukan yaitu bahwa zat yang dibentuk adalah 1 mol dan dibentuk dari unsurnya dalam bentuk standar.
Contoh: Entalpi pembentukan etanol (C2H5OH) (l) adalah -277,7 kJ per mol. Hal ini berarti: Pada pembentukan 1 mol (46 gram) etanol dari unsur-unsurnya dalam bentuk standar, yaitu karbon (grafit), gas hidrogen dan gas oksigen, yang diukur pada 298 K, 1 atm dibebaskan 277,7 kJ dengan persamaan termokimianya adalah:
2 C (s, grafit) + 3H2 (g) + ½ O2 (g) –> C2 H5 OH (l) ΔH = -277,7kJ
Nilai entalpi pembentukan dari berbagai zat serta persamaan termokimia reaksi pembentukannya diberikan pada tabel 2 berikut.
Tabel 2. Nilai entalpi pembentukan berbagai zat & Persamaan termokimia reaksi pembentukannya
9)Entalpi Pembentukan, Penguraian dan Pembakaran
Harga perubahan entalpi reaksi dapat dipengaruhi oleh kondisi yakni suhu dan tekanan saat pengukuran. Oleh karena itu, perlu kondisi suhu dan tekanan perlu dicantumkan untuk setiap data termokimia.
Data termokimia pada umumnya ditetapkan pada suhu 25 0 C dan tekanan 1 atm yang selanjutnya disebut kondisi standar. Perubahan entalpi yang diukur pada suhu 25 0 C dan tekanan 1 atm disebut perubahan entalpi standar dan dinyatakan dengan lambang Δ H0 atau ΔH298. Sedangkan perubahan entalpi yang pengukurannya tidak merujuk kondisi pengukurannya dinyatakan dengan lambang ΔH saja.
Entalpi molar adalah perubahan entalpi reaksi yang dikaitkan dengan kuantitas zat yang terlibat dalam reaksi. Dalam termokimia dikenal berbagai macam entalpi molar, seperti entalpi pembentukan, entalpi penguraian, dan entalpi pembakaran.
Langganan:
Postingan (Atom)